Strategy for structure determination using AlphaFold model

Phenix Workshop July 7, 2024, ACA Denver

Slides by Tom Terwilliger

The New Mexico Consortium Los Alamos National Laboratory

Presented by Christopher Williams, with additional slides

Richardson Lab Duke University, Biochemistry Department

AlphaFold predictions are great hypotheses

AlphaFold models can be....

AlphaFold predictions and confidence estimates

Residue-specific confidence (pLDDT) identifies where errors are more likely

AlphaFold confidence (pLDDT)	Median prediction error (Å)	Percentage with error over 2 Å
>90	0.6	10
80 - 90	1.1	22
70 - 80	1.5	33
<70	3.5	77

Terwilliger, Thomas C., et al. "AlphaFold predictions are valuable hypotheses and accelerate but do not replace experimental structure determination." Nature Methods 21.1 (2024): 110-116.

AlphaFold confidence measure (pLDDT, Predicted difference distance test)

	Li6(THR)	372(II	LE)		
	1(SER)		AlphaFold	Median	Percentage
	Confidence:		(pLDDT)	error (Å)	over 2 Å
	Blue: > 90		>90	0.6	10
	Green: 80 - 90		80 - 90	1.1	22
Alı	phaFold prediction	n for	70 - 80	1.5	33
	RNA helicase		<70	3.5	77
				Oeffner et al. (2022), Acta	a Cryst. D78, 1303-1314

PAE matrix (Predicted aligned error)

AlphaFold prediction for RNA helicase (PDB entry 6i5i)

PAE matrix identifies accurately-predicted domains

Strategy for structure determination in the AlphaFold era

Improving AlphaFold prediction using partial models as templates (Cryo-EM)

Data from 7mjs, Cater, R.J., et al. (2021). Nature 595, 315–319

Phenix AlphaFold prediction server

Available from the Phenix GUI

Predicts structures of protein chains

(one at a time)

Can use a template to guide the prediction

You do not need an MSA (multiple sequence alignment) if you supply a template

The template should not be an AlphaFold model

Many thanks for AlphaFold, ColabFold scripts, and the MMseqs2 server for MSAs

Process predicted model

Convert pLDDT to B-value

Trim low-confidence parts of model

Identify high-confidence domains

Compact high-confidence regions

Groupings of residues with low PAE values

DeepMind

Phenix tools for structure determination with AlphaFold

PredictModel (Predict with AlphaFold)

ProcessPredictedModel (*Trim and identify domains*)

ResolveCryoEM, LocalAnisoSharpen (map improvement)

EMPlacement, DockInMap (Docking of single, multiple chains)

DockAndRebuild (Morphing and rebuilding)

RealSpaceRefine (Refinement)

Phaser-MR (Molecular replacement)

AutoBuild (Density modification and rebuilding)

Phenix.refine (Refinement)

PredictAndBuild (Prediction and structure determination)

X-ray

EUII

automation

AlphaFold

models

Cryo-EM

Low-pLDDT Alphafold predictions

- Most of the time, AlphaFold predictions are highconfidence and easy to interpret
- Most of the time, phenix.process_predicted_model is all you need

So, let's talk about the other times . . .

When automation struggles, Use visualization

C A https://alphafold.ebi.ac.uk/entry/Q5VSL9

3D viewer

Model Confidence 💿

Von	high	(nI DDT	· •	00
verv	men	ULUUI	~	90
		M		

- High (90 > pLDDT > 70)
- Low (70 > pLDDT > 50)
- Very low (pLDDT < 50)

	`			Stru	cture	e 10	DOIS
131 .DG	🗘 Structure	e					
AA	A	F-Q5	VSL9-F1				٦
φ	Ту	/pe	Model				
9	No	othing	g Focused				\odot
2	🎽 Quick St	yles					
13 幸	Default	S	stylized	I	llustr	ativ	/e
	© Compon	ents			AF-Q	5VSL	9-F1
-	다 Preset		+ Add		귩		Ð
	Polymer		Cartoor	n 🤇	0	Ô	
	🛠 Measure	men	ts				
	- A stat						-F

ChimeraX: "color bfactor palette alphafold"

or PDB

Mol* viewer at

https://alphafold.ebi.ac.uk

in isolation.

AlphaFold produces a per-residue model confidence score (pLDDT) between 0 and 100.

Some regions below 50 pLDDT may be unstructured

Features to watch for

- High pLDDT
 - Unpacked helices

- Low pLDDT
 - Non-predictive "barbed wire"
 - Unpacked, physically possible regions
 - Near-predictive packed regions

Unpacked high pLDDT

 High-confidence, protein-like structure, touching nothing Homo sapiens

Uniprot **P60228**

• Often helix

• Often well-separated by PAE matrix

- Probably folded in biological multimer/complex
- May have to truncate the construct for solo crystallization

M. Jannaschii Uniprot **Q58865**

AlphaFold predictions and confidence estimates

Wrong

Residue-specific confidence (pLDDT) identifies where errors are more likely

AlphaFold confidence (pLDDT)	Median prediction error (Å)	Percentage with error over 2 Å
>90	0.6	10
80 - 90	1.1	22
70 - 80	1.5	22
<70	3.5	77

Awesome The low-pLDDT regime contains multiple behaviors

 Frwilliger, Thomas C., et al. "AlphaFold predictions are valuable hypotheses and accelerate but do not replace experimental structure determination." Nature Methods 21.1 (2024): 110-116.

Low pLDDT - Barbed wire

Low-confidence AlphaFold predictions often have wide coils like concertina wire

Barbed wire

- Extreme density of geometry outliers
 - (The protein is not actually drawn in this image, just the validation markup)
- This is a good thing!
- Along with pLDDT, this clearly and consistently marks regions where AlphaFold has "hallucinated" or made no prediction
- Different from "normal" modeling errors

Zinc finger CCCH domain-containing protein 13 Residues 70-100 *Homo sapiens* Uniprot **Q5T200**

about disorder, but the structure is probably an "AI hallucination"

Zinc finger CCCH domain-containing protein 13 Residues 70-100 *Homo sapiens* Uniprot **Q5T200**

Near-predictive

- Low pLDDT, but . . .
- Well-packed
- Protein-like fold
- Protein-like local geometry

Homo sapiens Uniprot **P60228**

Near-predictive

6zon.pdb, chain E P60228 AlphaFold prediction

Homo sapiens Uniprot **P60228**

pLDDT comparison

Protein-like regions with pLDDT ~45-70 *may* still be usable!

Whole-model statistics may be misleading

Clashscore, all atoms:	0.54		
Clashscore is the number of serious steric overlaps (> 0.4 Å) per 1000 atoms.			
Poor rotamers	27	3.12%	
Favored rotamers	791	91.55%	
Ramachandran outliers	133	13.91%	
Ramachandran favored	702	73.43%	
Rama distribution Z-score	-3.50 ± 0.24		
MolProbity score	1.87		
Cβ deviations >0.25Å	72	7.97%	
Bad bonds:	0 / 7731	0.00%	
Bad angles:	241 / 10452	2.31%	
Cis Prolines:	3 / 28	10.71%	
Cis nonProlines:	30 / 929	3.23%	
Twisted Peptides:	152 / 957	15.88%	
CaBLAM outliers	149	15.6%	
CA Geometry outliers	144	15.09%	
Tetrahedral geometry outliers	10		

Barbed wire present, validation says "probably unusable"

0.54		
per 1000 atoms.		
7	1.34%	
509	97.32%	
4	0.75%	
505	94.22%	
-0.75 ± 0.33		
1.17		
7	1.28%	
0 / 4757	0.00%	
30 / 6407	0.47%	
0 / 18	0.00%	
1 / 554	0.18%	
6	1.2%	
1	0.20%	
0/707		

Barbed wire removed, validation says "needs work"

Low-pLDDT tool in Phenix

- Barbed wire analysis combines:
 - pLDDT score
 - Packing quality
 - Ignores contacts within secondary structure
 - Ignores sequence-local contacts
 - Density of barbed wire-like validation problems

- phenix.barbed_wire_analysis
- phenix.barbed_wire_analysis output.type=kin
 - Colored balls kinemage markup
- phenix.barbed_wire_analysis
 output.type=selection_file
 - PDB-format file of just the Predictive and Near-predictive parts of the input

Low-pLDDT kinemage markup

- Predictive (blue)
- Unpacked high pLDDT (gray)
- Near-predictive (green)
- Unpacked possible (gold)
- Barbed wire (hot pink)

- This markup only available in KiNG/kinemage format for now.
- The low-pLDDT tool is still in development

What about AlphaFold3?

- This presentation concerns AlphaFold2
- AlphaFold3 has now been released
 - Abramson, J., Adler, J., Dunger, J. *et al.* Accurate structure prediction of biomolecular interactions with AlphaFold 3. *Nature* 630, 493–500 (2024). <u>https://doi.org/10.1038/s41586-024-07487-w</u>
- Offers centralized support for predicting ligands, multimers, modified residues, etc.

Improves pLDDT accuracy for "near-folded" regions

←(This has more blue)

- AF3 is not yet available in a form we can use for iterative prediction
- Stay tuned for developments

Lawrence Berkeley Laboratory

Paul Adams, Pavel Afonine, Dorothee Liebschner, Nigel Moriarty, Billy Poon, Oleg Sobolev, Christopher Schlicksup

University of Cambridge

Randy Read, Airlie McCoy, Alisia Fadini

UNIVERSITY OF CAMBRIDGE

Los Alamos National Laboratory New Mexico Consortium

Duke University

Jane Richardson, Vincent Chen, Michael Prisant, Christopher Williams

An NIH/NIGMS funded Program Project Liebschner D, et al., Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in *Phenix*. Acta Cryst. 2019 **D75**:861–877

Sample workflows

X-ray structure determination with AlphaFold

Input and output from structure determination with AlphaFold

Output

Experimental data (maps or X-ray data)

Contents of asymmetric unit (sequence file)

Rebuilt model Optimized map

Map and model ready for next steps Docked predicted models

Useful as high-quality reference models

Improving AlphaFold prediction using partial models as templates (X-ray crystallography)

