For spacegroup 96, the Int'l tables show the following reflection conditions: 0 0 l: l = 4n h 0 0: h = 2n So your assertion of zero systematic absences is incorrect. When in doubt process in the lowest symmetry point group (which I guess would be 422 here), and look individually at I and sig(I) for the relevant reflxns On 28 Mar 2011, at 6:23 PM, Yuri wrote:
Hello everyone, I was comparing 2 data sets I have and when I run Xtriage I noticed the following: a) for one crystal (data processed in P 4 2 2)
| space group | n absent | <Z>_absent |
_absent | +++ | --- | score | ------------------------------------------------------------------------------------ | P 41 21 2 | 24 | 0.03 | 1.30 | 0 | 2 | 0.000e+00 | | P 43 21 2 | 24 | 0.03 | 1.30 | 0 | 2 | 0.000e+00 | | P 42 21 2 | 22 | 0.03 | 1.27 | 0 | 4 | 7.187e-02 | | P 4 21 2 | 18 | 0.01 | 1.21 | 0 | 8 | 3.035e-01 | | P 41 2 2 | 6 | 0.11 | 1.59 | 0 | 20 | 9.065e-01 | | P 43 2 2 | 6 | 0.11 | 1.59 | 0 | 20 | 9.065e-01 | | P 42 2 2 | 4 | 0.13 | 1.57 | 0 | 22 | 9.784e-01 | | P 4 2 2 | 0 | 0.00 | 0.00 | 0 | 26 | 1.210e+00 | ------------------------------------------------------------------------------------ b) the other crystal, of the same enzyme (data scaled in P 43 21 2) x triage tells me this crystal is in P 43 21 2.
| space group | n absent | <Z>_absent |
_absent | +++ | --- | score | ----------------------------------------------------------------------------------- | P 4 2 2 | 0 | 0.00 | 0.00 | 0 | 2 | 0.000e+00 | | P 4 21 2 | 0 | 0.00 | 0.00 | 0 | 2 | 0.000e+00 | | P 41 2 2 | 0 | 0.00 | 0.00 | 0 | 2 | 0.000e+00 | | P 41 21 2 | 0 | 0.00 | 0.00 | 0 | 2 | 0.000e+00 | | P 42 2 2 | 0 | 0.00 | 0.00 | 0 | 2 | 0.000e+00 | | P 42 21 2 | 0 | 0.00 | 0.00 | 0 | 2 | 0.000e+00 | | P 43 2 2 | 0 | 0.00 | 0.00 | 0 | 2 | 0.000e+00 | | P 43 21 2 | 0 | 0.00 | 0.00 | 0 | 2 | 0.000e+00 | ----------------------------------------------------------------------------------- My understanding is that P 43 21 2 should have 0 systematic absences (if I am wrong, please point it out)
My questions are: what is really my space group? Or should I say space groups, if indeed I have two different space groups. How do I nterpret the scores? Could it all be a function of the space group they were processed in?
-- Yuri Pompeu
_______________________________________________ phenixbb mailing list [email protected] http://phenix-online.org/mailman/listinfo/phenixbb