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Two steps are required to merge equivalent reflections with the cctbx. Given a
miller.array m,

1. m1 = m.map_to_asu() projects each Miller index into the asymmetric unit, i.e. for
each group of equivalent reflection, each index of that group is replaced by the
same Miller index;

2. merging = ml.merge_equivalents() finds the group of identical Miller indices,
gathers the data and sigma’s for each group in turn, computes an average datum
and an associated sigma; merging.array() is then the miller.array containing
those unique indices associated to those averaged data and sigma.

The first step is only about space-group algebra whereas the second step is only about
statistics and this division is therefore optimally orthogonal in a sense. We will now
expound each step, starting from the second one.

1 Averaging of equivalent reflections

Given n data yi,...,y, and the associated estimated standard deviations oy,...,0n,
either the amplitudes or the intensities for a group of symmetry equivalent reflections,
we sought to combine those data and sigma’s into a single datum and an associated
standard deviation.
That merged amplitude or intensity 7 is computed as a weighted average of the
{yi}i:L...,np .
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There are two ways to handle this from a statistical point of view.

1.1 External variance

The first one gives a mathematical meaning to the loose assertion that all y; should be
equal within the uncertainties quantified by the o; (the exact equality is required by those
being equivalent reflections but this is spoiled by all sources of errors in measurement



and data processing up to this point). Each y; is then seen as an outcome of a random
variable 7; which is an unbiased estimator for the value y.q that all equivalent reflections
should ideally share, i.e. mathematically
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Then the average y is the outcome of the random variable
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which is obviously an unbiased estimator of yeq (i.e. E(J) = Yeq). If we postulate that
the measurement and data reduction lead to uncorrelated ;, then
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This is often called the “external” variance. Its lowest possible value is obtained for the
weights
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as well as for any weights differing from those by a common proportionality factor, as
demonstrated in appendix A and this minimum is equal to
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Those are the weights and the external variance used by the cctbx.
This is not the only popular choice. Indeed ShelXL [? | uses instead
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1.2 Internal variance

The second way to handle the average (1) is to consider it as a mere sample mean, but a
weighted one, ignoring the special property of the y;. Those data are considered as the
outcome of a sample (Y7,...,Y},) of a random variable Y, and g is then the outcome of
the unbiased estimator of E(Y),
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It is then natural to also compute a weighted sample variance
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However, it is a biased estimator of V(Y), as it is well-known in the unweighted case,
i.e. all weights w; equal. The unbiased estimator
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is therefore preferred. Those variances are called “internal” as opposed to the vari-
ance we have previously discussed. The cctbx computes it by using an instance of
scitbx::mean and variance and calling its member function gsl_stats_wvariance
whose implementation and naming follows the function with the same name in the
GNU Scientific Library [? ]. Since this formula is not that easily found in textbooks, we
demonstrate it in appendix B.

Finally, it is customary to estimate the variance associated with y by taking the
greatest of the internal and external variance. That is what the cctbx does as well as

ShelXL.

Appendix A Minimum variance weights

We will demonstrate eqn (6). We seek the solution of the constrained minimisation
problem

min V' (9), (13)
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Thus L reaches its minimum at
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and using eqn (15), it comes
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and therefore the minimum is reached at
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That demonstrates eqn (6) and since weights differing by a common proportionality
factor yield the same w;, QED.

Appendix B Weighted sample variance

First let us remember that, by definition of a sample,

Therefore,
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Then,
e since E(Y) = E(Y), the last term is V(Y);
e by definition of Y, > I ; w;(¥; — Y) = 0 and the second term is therefore 0.

Thus

V(Y)=E(S*)+V(Y). (23)



But

and therefore

(24)
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