
 August 12, 2015

 1

cctbx Developer Guidance

The Computational Crystallography Toolbox (cctbx) is a large code base under active
development by several groups worldwide. There are more than 1 million lines of code, 500
commits per month, and 20 active developers. It is therefore very important that all
contributors follow some basic guidelines. Keep in mind that the intention is for the cctbx to
provide a fully featured code base for crystallographic calculations while also remaining
lightweight and straightforward to compile and install.

1. No new dependencies without discussion with the other developers.

a. This is important to keep the cctbx easy to compile and install. The inclusion of
third-party packages that have their own dependencies is therefore strongly
discouraged. This applies especially if a dependency on a new compiler language
is introduced.

2. Don’t introduce new dependencies if there is code in cctbx to provide the needed
functionality

a. It is often the case that the required functionality already exists in the cctbx.
Developers are encouraged to check first with other cctbx developers and review
the code base prior to implementing new functionality.

3. Avoid code duplication

a. Add new context independent functions into appropriate modules, not into
specialized code. Example: a place for the function that calculates distance
between two points is scitbx; however, it may be very tempting to inline this
function into a specialized code as needed thus creating code duplication.

b. Use constants from a central place. Example: use math.pi instead of defining
pi=3.14 every time it is needed. Note: there are plenty of other constants available,
such as scitbx::constants::two_pi_sq; add more as needed.
(Make sure not to use an OS-dependent constant)

4. Use an appropriate coding style for cctbx

a. There is a Python Style guide that is generally useful
Note however that where cctbx deviates from PEP8, follow cctbx (for example
using 2 spaces to indent instead of 4).

b. Constructs should be used to make subsequent use and testing as easy to debug
as possible (i.e. standard out and standard error output)

c. Printing output

i. Use “print >> log, bla” and not “print bla” .

ii. Use “show” function to print a summary or result of code execution instead
of in-lining print statements directly into the code.

iii. Avoid unconditional printing.

 August 12, 2015

 2

d. Consistency. If editing an existing file, follow the code style of that file.

e. Code clarity. Ideally, clearly written code does not need documentation (however,
even clearly written code may benefit from documentation!). Having this in mind:

i. Use self-explicable function/class/argument/file names. A clear long name is
better than a short cryptic name.

ii. While valid exceptions exist, generally if a function does not fit a page then it
is likely to benefit from being broken into smaller functions.

f. Common modern computation courses emphasize the importance of in-code
documentation

i. Since what is clear to one person might not so clear to another (or to the
same person after several months or years).

ii. Auto documentation creation (like sphinx) use the in-code documentation
strings.

iii. Time saving: a developer can read the documentation to understand what a
function does, what are the arguments’ types and formats and what it
returns. This is much better than having to read and figure out what a
function needs and what it does.

iv. Longevity: Since developers and collaborators change over time and since
the cctbx and related systems such as Phenix and DIALS are quite complex
software, uncommented code might be a barrier for continuous
development.

v. Update documentation to reflect code changes

g. Developers are encouraged to correct severe deviations from coding styles found
anywhere in codebase.

h. Developers are encouraged to modify code comments when unclear, outdated or
in a format that does not render well in the SPHINX automated documentation.

5. Run find clutter before commits

a. libtbx.find_clutter primarily checks for a few common errors:

i. No ‘from __future__ import division’. Use
libtbx.add_from_future_import_division to fix. Important: always use the //
operator to indicate integer division; the / operator is exclusively for floating
point division.

ii. Tabs or trailing whitespace: use libtbx.clean_clutter to fix.

iii. Unused imports: use libtbx.find_unused_imports_crude to find them and
remove them.

 August 12, 2015

 3

iv. The use of bare except statements is prohibited, since it causes the
try...except to catch KeyboardInterrupt. At a minimum use ‘except
Exception’.

b. Before submitting your code, be sure to test it again after fixing problems by
running find_clutter.

6. Note that some IDEs have Code inspection tools and Style formatting tools, that can help
maintain the style and avoid other code pitfalls (for example: pycharm)

7. Use the cctbx mailing list to ask for guidance from other developers, and locate specific
features in the current code base.

a. The other cctbx developers are an invaluable resource that can be used to help
with getting started in cctbx development.

b. Link to the mailing list: http://www.phenix-online.org/mailman/listinfo/cctbxbb

8. Send email to the mailing list stating the intent to submit a new code tree within the cctbx.

a. There are several sub projects within the cctbx, often embodied in the form of code
trees within the main cctbx project. New code trees should not be introduced
without good reason, and if abandoned the code tree should be removed. This
reduces the accumulation of distracting code in the cctbx over time.

b. Periodically, unused code trees may be removed from the cctbx to minimize clutter.

9. Developers are encouraged to subscribe to svn check-in alerts sent via email (code
changes alerts) and review the diffs.

a. This will minimize surprises later when someone changes someone’s code.

b. Any inefficiencies or bugs spotted in diffs should be pointed out to a respective
contributor or fixed by anyone who found them first.

10. Python do’s and don’ts:

a. Prefer xrange() and xreadlines() to range() and readlines() for performance
reasons; especially for large lists & arrays.

b. Use inheritance to specialize classes whenever possible to avoid the duplication of
code.

c. Put most imports inside the method whenever possible, thus avoiding imports
within the global space of a module. Nested imports create huge runtime
overhead, particularly as the code base has grown so large over time.

d. Never use import *, thus it should always be clear within a module where a name
comes from, i.e., from math import sin, cos, pi. The only exception is within the
__init__.py module of a package, where it is permissible to import all items from a
C++ extension module.

 August 12, 2015

 4

e. Never use isinstance(): a method should not be forced to inquire what type an
argument is in order to know how to perform. Instead, the method is entitled to
expect arguments to conform to an interface specification; for example if the
method prints an object, it should be expected (or documented) that the object
should have a __str__() method. More details of this discussion may be found at
http://www.canonical.org/~kragen/isinstance

11. Tests (see more below)

a. Any newly added functionality requires a unit test.

b. Developers are encouraged to add unit tests to any existing functionality found to
have no unit test.

c. Any bug fix requires a regression test.

Guidance for Developing Tests

The cctbx tests are to ensure the code base is always functional. Tests preserve designed
functionality ensuring it always performs as expected. Also, tests are a great learning
resource as they exemplify most of the available functionality. For many developers they
substitute for documentation. Note: not all tests available in the code base are good
examples to follow. When adding a new test please follow the guidelines below. Ask
questions on the cctbx mailing list.

1. Place:

a. Each module has a directory called regression. This is the place for all tests.

b. Each module has a file called run_tests.py that runs all tests listed in it (that
includes all tests in that module).

c. Historically, many test files were added next to the actual implementation (in the
same directory). Those should eventually be moved to the regression directory.

2. Name:

a. The general name template for a test file is tst_xxx.py, where "xxx" may be the
name of functionality or file being tested. Example: tst_miller.py.

3. Run time (per each tst_xxx.py):

a. The faster, the better. Generally execution time should be well under 30 seconds,
in exceptional cases 60 seconds should be the absolute max.

4. Adding a test involves three steps:

a. Create a file tst_xxx.py

b. Place it into the module/regression directory

c. Edit module/run_tests.py file (otherwise the test will not be run).

5. Miscellaneous:

 August 12, 2015

 5

a. Tests should be focused, clear and exercise one functionality at a time. A general
template is shown in the inset below.

b. Ideally, a test code ("exercise"
in the example on the right)
should not exceed a page in
length so it can be quickly
read through and understood
(and, if it fails, be fixed by
anyone). One file may contain
several tests. A brief doc
string should state the test
objective, means and
expected result. If a test fails
the failure should be clear by
showing the full traceback (no
swallowing tracebacks with printing "TEST FAILED").

c. Use tools from libtbx.test_utils as much as possible. Add more as needed.
Example: use approx_equal to assert the expected result.

d. Inputs that can be generated at run time should be used as much as possible (as
opposed to storing input files with models and data). Examples:

i. If an atomic model is needed use random_structure or make the PDB
records as short as possible and inline them into the body of the test file.

ii. Diffraction data can be calculated from an atomic model.

e. If an auxiliary functionality is identified that is repeatedly used across multiple tests
and is deemed to be useful for future tests, it may be abstracted and placed in
specialized locations such as cctbx/development. An example of such functionality
is cctbx/development/random_structure.py that generates a random atomic model.

f. It is best to keep the structure and style of tests as similar as possible, so that
anyone (and not only the test author) can fix a broken test if necessary.
Remember, fixing broken tests is not a pleasant exercise and often is time
consuming. Therefore, any test design that can make this task easier is greatly
appreciated; one is keeping tests similar in structure and style.

g. Tests should be robust w.r.t. platform, compiler and rounding errors.

h. Broken tests stop others from committing their code. Therefore fixing a failed test is
the highest priority.

i. Avoid using libtbx.easy_run.fully_buffered because it hides the output and the
traceback. Use libtbx.easy_run.call instead. Print the command that is about to run
to standard output.

from __future__ import division
from libtbx.utils import format_cpu_times
from libtbx.test_utils import approx_equal

def exercise():
 """
 Make sure 2*2 is 4.
 """
 x=2.
 result=x*x
 assert approx_equal(result, 4.)

if(__name__ == "__main__"):
 exercise()
 print format_cpu_times()
 print "OK"

 August 12, 2015

 6

j. Output actual values in a failed assert statement:

• assert a>b, "%f > %f assertion failed" % (a,b)

